

www.Gemingag.co

HTW76

Series model **Linear Actuator**

Applications

- 1. Industrial
- 2. Agriculture
- 3. Automotive
- 4. Solar tracking
- 5. Military industry

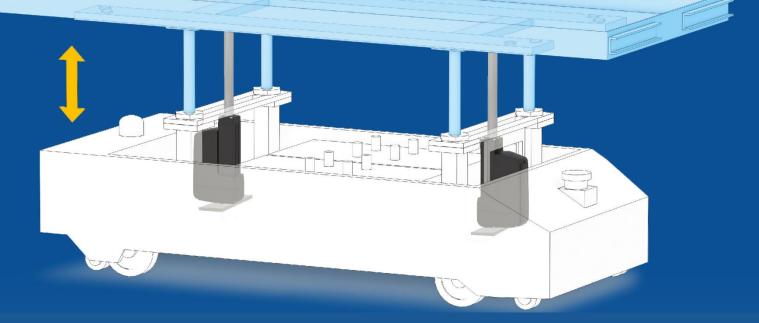
HTW76 is specially designed for harsh industrial environments, especially suitable for some mechanical equipment with a large amount of consumption, such as farming machines and industrial equipment. Moreover, it can meet strict specifications and standards. The smart actuator is equipped with on-board electronic components and does not require a separate control system. With higher power up to 16 kN, it opens up more possibilities to replace the hydraulic applications, HTW76 would be a good choice!

Features

realures				
Voltage:	12V,24V,36V,48VDC			
Max Push/Pull Force:	16KN			
Speed @ Full load	5.mm / s (load 18KN)			
Retracted Length:	Stroke + 250mm			
Dynamic Torque: Static Torque:	100Nm 200Nm			
Color:	Black			
Quality Management: ISO9001-2008, certified by CE and ROHS				
Ambient temp. Range: Operating Temp. Range:	-40° C ~ + 75 ° C +5 ° C ~ + 45 ° C			
Protection Level: Screw Type:	IP66 Trapezoidal, Ball screw(no self-locking force)			
Option for Signal Output:	Hall sensor, Potentiometer			
Option for Control System:	100% synchronized control, individual control, Integrated control			
Material:	High-strength metal zinc alloy gear box and housing			
Limit Switches:	Built-in, but not adjustable; External magnetic switch, adjustable			
	Version: 20210626			

The trend of electrical conversion is accelerating 000 Lower cost and compact size suitable for design ≻ Faster and easier to install than hydraulic or pneumatic systems Better control and higher precision ≻ React Faster, more predictable, no more drift when power off

Save Energy

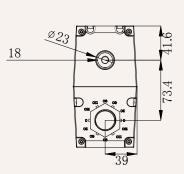

- Electric motors are inherently more efficient than pneumatic or hydraulic ones.
- No need to expand the scale of existing systems
- Without a power supply, the load can be maintained to reduce consumption.

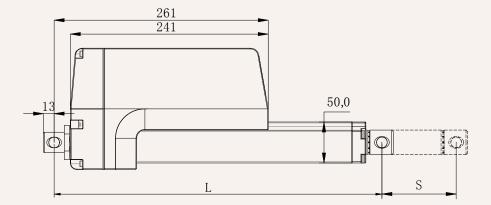
Less Maintenance

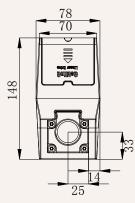
- No need for hydraulic pumps, valves or hoses, reducing downtime and repairing parts time
- Equipped with intelligent airborne equipment to increase the design flexibility of component placement
- > Eliminates costs and troubles related to liquid maintenance

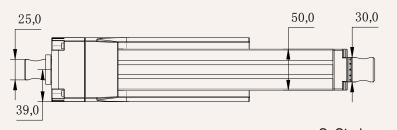
- > Flange installation can be added for rear attachment.
- Suitable for driver-less vehicles, mobile equipment and industrial automation
 - Height adjustment
 - Positioning adjustment
 - > The design is more compact,

Make it easier to install in a small space,

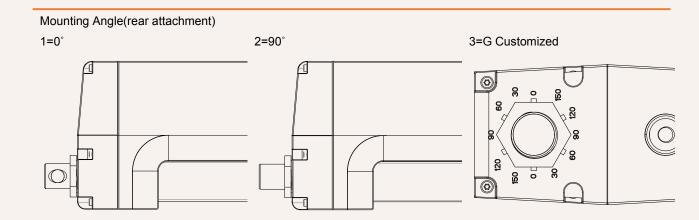

> Very suitable for designing different types of automation equipment,


Unmanned vehicles and lifting equipment,


While retaining many popular advantages!



Drawings Dimension (MM)



S: Stroke L: Retracted length L=Stroke +250mm

LOAD & SPEED

Code	Rated Load	Rated load	Self-locking	Rated Current	Rated Speed	Rated Speed
	Push	Pull	Static	Full-load	No-load	Full-load
	Ν	Ν	Ν	A	mm/s	mm/s
Motor V	oltage (24V DC)					
А	16,000	16,000	18,000	20	4.5	3.3
В	12,000	12,000	12,000	20	6.2	4.9
С	9,000	9,000	9,000	20	7.9	6.3
D	6,000	6,000	6,000	20	12	10
Е	5,500	5,500	5,500	20	16	13
F	3,500	3,500	3,500	20	25	20
G	3,000	3,000	3,000	20	28	22
Н	2,300	2,300	2,300	15	37	30
I	1,500	1,500	1,500	15	55	45
J	1,000	1,000	1,000	15	83	67
К	650	650	650	15	110	89

Remark

1. The current and speed in the table are the averages tested when using push force.

2. The current & speed results in the table are based on the use of a GeMinG brand control box, and there will be an error of about 10% depending on different types of the control box.

3. 29V DC @ no-load, 24V DC @ rated load

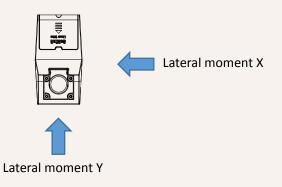
Reference 24vdc	e Chart									
HTW76			Load±1	0% (N)		Spe	ed ± 2 (m	m / sec)		
Load	16,000	12,000	9,000	6,000	5,500	3,500	3,000	2,300	1,500	1000
Speed	5	6	8	12	16	25	28	37	55	83
HTW76			Stroke ±	£ 2 (mm)		Retr	acted len	gth ± 2 (mm	ו)	
Stroke	80	100	150	200	250	30	00	350	400	450
L	330	350	400	450	500	5	50	600	650	700

Stroke VS Retracted length:

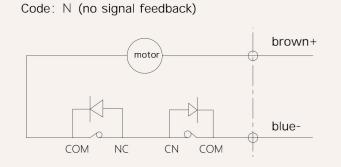
Eg. Stroke 100mm, retracted length=350mm, extended length=450mm

Load VS Stroke

Load (N)	Stroke range (mm)
16,000	50-600
10,000	50-800
2,000	50-1300


Note:

Lateral moment Y = X*0.8


Static lateral moment = dynamic*2

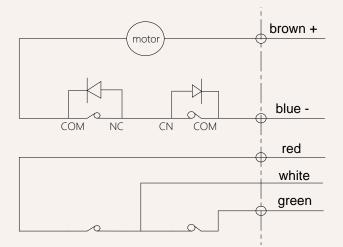
Dynamic lateral moment(Nm)-X

Stroke	S/2+180	S/2+220
100-300	500	700
300-500	450	650
500-700	300	300
700-900	200	100

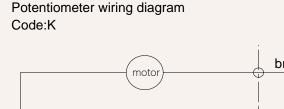
Wiring Diagram

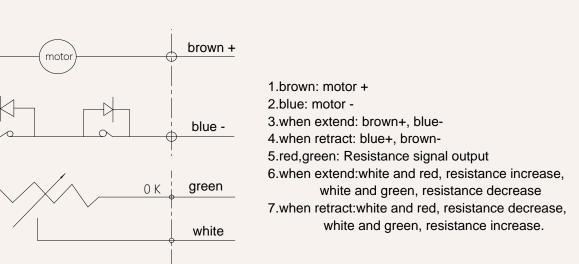
wring instruction

- 1] brown: motor +
- 2] blue: motor -
- 3] when extend: brown+, blue-
- 4] when retract: blue+, brown-


Other signal descr	iptions	
Signal feedback	Description	Features
Active	Voltage from this motor	When the linear actuator runs to the end point, the feedback signal will continue to exist until the running state
Passive	No voltage	When the push rod runs to the end, the feedback signal will persist until the input power is turned off or during operation.
Other requirements pl	lease contact GeMinG.	

Signal feedback: active or passive


Series model


Active or passive endpoint signals wiring diagram Code: W(passive signal), U(active signal)

1.brown: motor + 2.blue: motor -3.when extend: brown+, blue-4.when retract: blue+, brown-5.white:common line 6.white and red: extend to the end signal 7.white and green:retract to the end signal

Signal feedback: Potentiometer

Potentiometer Configuration Form

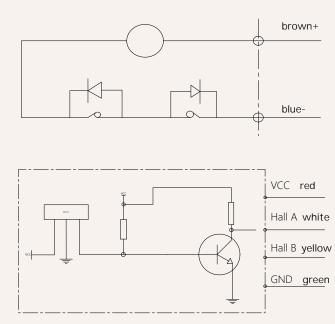
Code (refer to Page5)	Stroke available	Resistance Range (KΩ)		
A,C,E,G	50-350MM	Stroke 50-200: 5.0	Stroke 50-30: 7.5	
B,D,F	50-550MM	Stroke 50-200: 3.17	Stroke 50-400: 6.35	

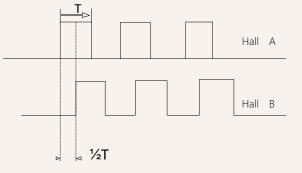
Note: potentiometer 10KQ.(The actual resistance depends on specific stroke)

10K

red

Signal feedback: Hall Sensor


Code(refer to page 5)	Magnetic Ring	SIZE	Output Pulses
A	Ф32MM	4 pair,12MM	0.3528 pulse/mm
В	Ф32ММ	4 pair,12MM	0.7938 pulse/mm
С	Ф32MM	4 pair,12MM	1.3122 pulse/mm
D	Ф32ММ	4 pair,12MM	3.1753 pulse/mm
E	Ф32MM	4 pair,12MM	2.6245 pulse/mm
F	Ф32ММ	4 pair,12MM	6.3506 pulse/mm
G	Ф32ММ	4 pair,12MM	9.5259 pulse/mm
Н	Ф32ММ	4 pair,12MM	16.0751 pulse/mm
I	Ф32ММ	4 pair,12MM	32.15 pulse/mm
J	Ф32ММ	4 pair,12MM	48.225 pulse/mm
К	Ф32ММ	4 pair,12MM	257.2 pulse/mm


Remark:

- 1) Support dual channel/single channel Hall encoder
- 2) Current consumption type digital output
- 3) High-speed response frequency from: 0 KHz-100 KHz
- 4) Applicable temperature range: -40 °C~+125 °C

Features	Symbol	Test conditions	MI	RE	Μ	Unit
Input voltage	Vcc		3.5		24	V
Output vol.	Vce/sat	Vcc=14V ; Ic=20mA		300	700	MV
Leakage current	1 cex	Vce=14V ; Vcc=14V		<0	10	UA
Input voltage	1 ce	Vcc=20V ; Output open		1	10	Μ
Falling time	R	Vcc=14V ; RL=820Ω ; CL=20pF		0.3	1.5	US

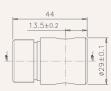
Hall Sensor wiring diagram Code: H

Brown: motor+ Blue: motor-Red: VCC 5V+ Green: GND 5V-White: hall signal output A Yellow:hall signal output B

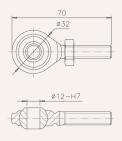
Voltage	12-12/ DC	, 24=24V DC, 36=36V DC			220-220\/ A C
Voltage	: 12=12V DC	, 24–24V DC, 30–36V DC	, 40=40V DC, 1	10=110V DC,	, 220=220V AC
Speed(mm/s) Refer to Pag	ge 5			
Stroke(mm)				
Retract (mm)	etracted length nm)				
Load(n)) Refer to Pag	ge 5			
Front A Refer to	ttach. p Page 8 2 = standard 3 = clevis he 4 = clevis he 5 = joint bea	d, dia 13mm d, dia 14mm ead, slot width 8.5mm, dep ead, slot width 8.5mm, dep aring, dia 12mm aring, dia 16mm		1mm	
Rear At Refer to	ttach. o Page 10 Same as fro	ont attachment			
Plug ty	pe 1 = stripped 3 = 4 pin 0°	l wire straight plug		90° curved plu)° straight plu	-
Screw	G= Ball scre	ew(no self-locking)	P = Trapez	zoidal	
Control	Method A = NO	B = Integrated	C = synch	ronized	D= customized
Signal	Output N = NO	H = Hall sensor	K = Poten	tiomotor	W = Passive U = Active
Cable L	_ength 1 = 700mm	2 = 1000mm	3 = 1500m	ım	4 = customized

Code: HTW76-12-05-100-350/450-A-1-1-G-A-N-1

Customized requirements please contact GeMinG sales team.


Statement

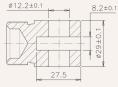
It is the user's responsibility to determine whether the licensed application is suitable for a particular product. However, as the research and development process continues to improve its product performance, GEMING can make modifications or changes without prior notice. Therefore, GEMING reserves the right to stop sales on the company's

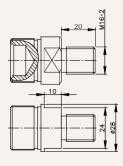

Front Attachment

1= standard, dia 12.5mm

5 = joint bearing, dia12mm GS12

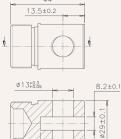



2 = standard, dia 13.5mm

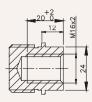

6 = joint bearing, dia16mm GS16

87 042 016-H7 3 = clevis head, slot width 8.5mm, depth 27mm, dia 12.5mm

7= T **type,** M16*1.5*20

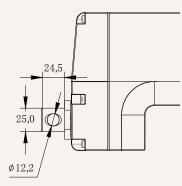


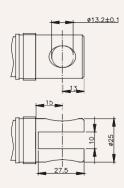

3 = 0 degree, dia 14mm


П

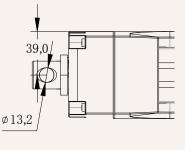
4 = clevis head, slot width 8.5mm, depth 27mm,

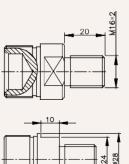
dia13.5mm





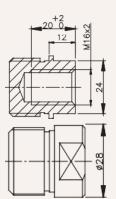
Rear Attachment


1 = 0 degree, dia 12.2mm

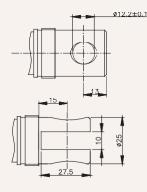

5 = clevis head, dia 13mm

2 = 90 degree, dia13mm

6=T **type**, M16*1.5*20



7=0 type, M16*1.5*20


24,5

25,0

ø14,1

4 = clevis head, dia 12mm

8 = customized